The Bayesian controversy in animal breeding
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ABSTRACT: Frequentist and Bayesian approaches
to scientific inference in animal breeding are discussed.
Routine methods in animal breeding (selection index,
BLUP, ML, REML) are presented under the hypotheses
of both schools of inference, and their properties are
examined in both cases. The Bayesian approach is dis-
cussed in cases in which prior information is available,
prior information is available under certain hypotheses,
prior information is vague, and there is no prior infor-
mation. Bayesian prediction of genetic values and ge-
netic parameters are presented. Finally, the frequentist
and Bayesian approaches are compared from a theoreti-

cal and a practical point of view. Some problems for
which Bayesian methods can be particularly useful are
discussed. Both Bayesian and frequentist schools of in-
ference are established, and now neither of them has
operational difficulties, with the exception of some com-
plex cases. There is software available to analyze a
large variety of problems from either point of view. The
choice of one school or the other should be related to
whether there are solutions in one school that the other
does not offer, to how easily the problems are solved,
and to how comfortable scientists feel with the way
they convey their results.
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Introduction

Gianola and Foulley (1982) introduced Bayesian
methods in animal breeding in the context of threshold
traits, and soon afterward Gianola and Fernando (1986)
highlighted additional possibilities exploiting Bayesian
techniques. Some years before, Ronningen (1971) and
Dempfle (1977) had called the attention to the fact that
BLUP could be interpreted as a Bayesian estimator,
and Harville (1974) offered a Bayesian interpretation
of REML. However, although Bayesian methods were
theoretically powerful, they usually led to formulas in
which multiple integrals had to be solved in order to
obtain the marginal posterior distributions used for a
complete Bayesian inference. Because these integrals
could not be calculated, even using approximate meth-
ods, Bayesian inference was based on the mode of poste-
rior distributions, often giving results rather similar

!This paper has been revised by a considerable number of col-
leagues. I would like to express my gratitude to all of them, especially
to my friends Daniel Gianola, Daniel Sorensen, and Susie Bayarri
for their detailed comments and to Luis Varona for providing me an
intuitive way of explaining Gibbs sampling. I also want to express
my gratitude to one of the referees for his/her detailed revision
and suggestions.

2Correspondence: P.0O. Box 22012 (phone: +34963877433; fax:
+34963877439; E-mail: ablasco@dca.upv.es).

Received February 7, 2000.

March 28, 2001.

J. Anim. Sci. 2001. 79:2023—-2046

to the REML approaches. When Monte-Carlo Markov
Chain (MCMC) methods were applied to estimate mar-
ginal posterior distributions, the computation problems
were solved and interest in Bayesian methods was re-
newed. However, frequentist statisticians are reluctant
to use Bayesian methods, mainly due to difficulties
found in the use of prior information inherent to the
Bayesian paradigm. The objective of this article is to
discuss the frequentist and Bayesian approaches to sci-
entific inference in animal breeding, showing their ad-
vantages and disadvantages, and their application to
particular topics in animal breeding for which the
Bayesian approach can be useful. Stuart and Ord (1991)
give a frequentist viewpoint of the statistics, whereas
Bernardo and Smith (1994) provide a Bayesian account.
Inferences based on the likelihood can be found in Ed-
wards (1992). There is an excellent book on comparative
statistical inference by Barnett (1999).

Scientific Inference

A constant theme in the development of statistics has
been the search for justification for what statisticians do.
To read the textbooks one might get the distorted idea that
‘Student’ proposed his t-test because it was the Uniformly
Most Powerful Unbiased test for a Normal mean, but it
would be more accurate to say that the concept of UMPU
gains much of its appeal because it produces the t-test, and
everyone knows that the t-test is a good thing.

Dawid (1976), as quoted by Robinson (1991)
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The recent irruption of Bayesian methods in animal
breeding has motivated a certain perplexity among ani-
mal breeders. The supporters of these methods say they
give a precise answer to some problems that are not
well solved in animal breeding; for example:

Suppose some animal model holds, and a standard analy-
sis coupling maximum likelihood (ML) with BLUP method-
ology is carried out. With respect to the first question [What
can be said about genetic variance in a base population?],
we would obtain a point estimate of genetic variance and
a single measure of uncertainty, which, technically speak-
ing is only meaningful in large samples and if the data are
normally distributed. To tackle the second one [How does
one account for uncertainty about breeding values when
location and dispersion parameters are unknown?] we
would have to place ourselves conditionally on the ML esti-
mates of dispersion parameters, ignoring the error. The
issue of response to selection [Given a selection scheme or
experiment, how does one assess effectiveness of selection,
and attach to this a measure of uncertainty?] is even more
complicated. Estimation of responses can be derived from
an animal model, but their properties are unknown. . . . An
alternative is to adopt the Bayesian position. For each of
the questions raised above, the Bayesian answer resides
in arriving at the marginal posterior distribution of the
unknown of interest. This distribution provides an exact
account . . . of the uncertainty about the unknown parame-
ter.

Gianola et al. (1994)

Conversely, well-known statisticians working in ani-
mal breeding show their skepticism, if not their open
opposition, to the use of these methods:

I also pointed out why some Bayesian estimators have
unfortunate properties, in that they are likely to give esti-
mates of zero for between group variance components in
well designed experiments. However this type of estimator
is still advocated.

Thompson (1987)

The controversy between the frequentist school and the
Bayesian school of inference has huge implications. From
the viewpoint of the data analysis the implication is that
all of the procedures exposited in books like Snedecor and
Cochran’s Statistical Methods are not merely poor but have
no logical foundation. Also, every reporting of any investi-
gation must lead to the investigator’s making statements
of the form: “My probability that a parameter, 6, of my
model lies between, say, 2.3 and 5.7 is 0.90.

Kempthorne (1984)

Although only the Bayesian and frequentist schools
are discussed, because they are the only relevant
schools of inference today, inferences based on likeli-
hood are intermediate. On one hand, the likelihood
plays a central role in the Bayesian inference as the
function expressing all the information derived from
the data. On the other hand, the method of ML has
interesting frequentist properties. The animal breeder
may be interested in finding efficient solutions for esti-
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mating breeding values, and not necessarily in the un-
derlying philosophy. Thus, it is reassuring that when
a data set is sufficiently large, the results are very
similar in most cases. It is also pleasing that the meth-
ods used most frequently in animal breeding can be
derived under either the Bayesian or the frequentist
paradigms. Harville and Carriquirry (1992) studied the
properties of closely related estimators for animal
breeding values, deduced from frequentist and Bayes-
ian approaches, and stressed the similarities between
results of both procedures. Robinson (1991) even states
that the differences between schools are minimal for
estimation of breeding values, and that most of the
debate comes from the insistence of supporters of both
schools on stressing their differences, rather than their
similarity. We may get the impression that the differ-
ences between schools are merely “philosophical” ones,
with no practical consequences. It is true that when
data sets are large, problems arise more from computa-
tion difficulties and limits than from inferential rea-
sons. However, in most studies, experimental design
tries to maximize efficiency by optimizing the size of the
experiment, and a large data set may not be available in
many cases. Moreover, differences between schools in
their approach to inference are notable, even from a
practical point of view.

First, the expression of uncertainty about unknowns
is completely different. The frequentist school studies
the distribution of the estimator. In this framework, it
is usually given a standard error of this distribution
and sometimes the complete sampling distribution of
the estimators using techniques such as the bootstrap.
The Bayesian school aims to obtain the probability den-
sity function of the parameter for a given set of data.
From this density function one can get the most proba-
ble value of the parameter, or the probability that the
parameter resides within certain limits. The fre-
quentist way of inference is based on how a large num-
ber of estimates would be distributed around the true
value if a large number of samples were taken or an
infinite number of repetitions of the experiment were
performed, whereas Bayesians examine the probability
distribution of the true value, given the data. For a
frequentist, the true value is usually fixed and the sam-
ple is variable, whereas for a Bayesian the sample is
fixed and the parameter of interest is a random vari-
able. That does not mean that a true value of the param-
eter does not exist; for a Bayesian the true value exists,
but because the Bayesian does not know which value
itis, and thus the Bayesian speaks about the probability
that this parameter has a particular value.

Second, some statistical concepts currently used in
animal breeding do not have a Bayesian interpretation,
for example, “bias” and the difference between fixed
and random effects. In a Bayesian context “bias” does
not exist, because conceptual repetitions of the experi-
ment are not considered. Also, all effects are random
because the Bayesian way of expressing uncertainty is
to draw density functions of all unknowns, and thus all
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unknowns are considered random variables. This can
be surprising to an animal breeder working with BLUP
(Henderson, 1973) or REML (Patterson and Thompson,
1971), but the property of unbiasedness has been dis-
cussed even within the frequentist school. For example,
Henderson himself stated that biased methods could be
more efficient (e.g., Henderson 1984). Fisher considered
the property of unbiasedness as largely irrelevant
(Fisher, 1956), mainly because it was not invariant to
reparametrization. For example, the expectation of an
unbiased estimator of the variance is the population
variance, but the expectation of the square root of this
estimator is not an unbiased estimator of the standard
deviation. With respect to fixed effects, Fisher thinks
that the distinction between fixed and random effects
was not a clear improvement of the analysis of variance
(see the introduction to the new edition of Fisher’s sta-
tistical books, Yates, 1990). Henderson decided to use
fixed effects in genetic evaluation, introducing mixed
models, due to some technical problems related to the
correlations between herd and genetic effects, as will
be seen later, but noting that random effects have a
lower risk of estimation.

Third, inferences obtained from both schools are not
always coincident, particularly for small samples and
when the Bayesian analysis uses prior information
(e.g., Wang et al., 1994).

Fourth, some problems that have no solution (or only
a rough approximation) in the frequentist school can
be solved unambiguously with the Bayesian approach
(see the previous quote of Gianola et al., 1994).

Given the apparent advantages of the Bayesian
school on the first and fourth points, two obvious ques-
tions arise. Why were the Bayesian techniques aban-
doned in the past? Or, as Brad Efron asks in a brief
paper with an interesting discussion, Why isn’t every-
one a Bayesian? (Efron, 1986). And why have fre-
quentist techniques persisted in the field of animal
breeding? The first question has a simple answer:
Bayesian methods usually require solving complicated
multiple integrals, many times requiring the use of
numeric methods (e.g., Cantet et al., 1992) that may
not be feasible. The recent development of MCMC tech-
niques (Gibbs sampling and others) has given a solution
to many problems that were unsolvable before, due to
the impossibility of evaluating these integrals. The sec-
ond question has a more difficult answer and requires
a detailed comparison of how inference is made in each
of the schools. Subsequent sections of this paper provide
this comparison and expose reasons for and against the
use of one or the other form of inference in the common
statistical problems of animal breeding.

The Frequentist School

The frequentist school was developed in the 1930s
and 1940s and was based on the earlier work of Karl
Pearson and Ronald Fisher. The most relevant names
associated with this school are Jerzy Neyman and Egon
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Pearson (son of Karl Pearson), who dealt with inference,
and Abraham de Wald, who worked in decision theory.

Inference and Precision

Most animal breeding work relates to estimation of
genetic values or parameters and to testing hypotheses;
only recently has some work related to decision theory
been published (e.g., Wooliams and Meuwissen, 1993).
Below are some of the features of inference in the fre-
quentist school.

Repeating an experiment conceptually an infinite
number of times we can arrive at an infinite number
of confidence intervals, which would include the true
value of the parameter in, say, 95% of the cases. Notice
that when a confidence interval is given, for example
[0.15, 0.25] for h?, this does not mean that the probabil-
ity of h? being between 0.15 and 0.25 is 95%. What we
say is that if the experiment would be repeated an
infinite number of times, we would get an infinite num-
ber of confidence intervals (of which [0.15, 0.25] is just
an example) that would contain the true value of h? in
95% of the cases. Neyman and Pearson (1933) suggested
that the “scientific behavior” should be to act as if the
interval obtained was the true one, being sure that, in
the long run, we will be right in 95% of the cases.

Assuming the risk of considering a hypothesis to be
true when it is not, or of rejecting the hypothesis when
it is true, some regions of acceptance or rejection can
be defined, based on the distribution of the sample un-
der the hypothesis to be tested when the experiment is
repeated an infinite number of times. The hypothesis
is accepted or rejected depending on whether the actual
sample falls in one of the regions or in the other. After
the hypothesis is accepted, the “scientific behavior”
should be to act as though this hypothesis were true.

Without hoping to know whether each separate hypothe-
sis is true or false, we may search for rules to govern our
behavior with regard to them, in following which we insure
that, in the long run, of experience, we shall not be too
often wrong.

Neyman and Pearson (1933)

This procedure is considered to be based on a “subjec-
tive belief” by some philosophers of science (Howson
and Urbach, 1996), a statement that may be considered
surprising by many members of this inference school.
Note the method gives no clues about how probable is
a hypothesis related to the other. The answer given by
a test of hypothesis is just yes or no, because the risk
and the corresponding regions are fixed before the ex-
periment is performed. This is a rather weak answer
from an inference point of view, although it is helpful
for making decisions.

There are some problems associated with common
practice. For example, a hypothesis may be that two
breeds have the same mean for some trait. Note that
by augmenting sample size sufficiently, this hypothesis
will be always rejected. Thus, in a well-designed experi-
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ment, it should be decided when (that is, how large
the difference between means should be) a hypothesis
should be rejected. The problem arises in poorly de-
signed experiments, in field data, or in tests for traits
not considered when designing the experiment. In all
these cases, significance will not be associated with
relevant differences because these differences were not
considered when the experiment was designed. Thus,
the answer provided by the test (to accept or reject the
hypothesis) might be unsatisfactory, because we can
find relevant differences that are not significant or irrel-
evant differences that are significant. Moreover, if we
consider several traits, and the design has been made
for only one trait, we will find significant differences
for some of these traits even when the null hypothesis
is true, just because there is always some probability
of falling into the rejection region. The probability of
falling into this region for at least one trait increases
with the number of traits considered.

One of the main problems of scientific inference is
the choice between several models that can explain the
results obtained. Many times these models are nested.
For example, it has to be decided whether or not a
maternal effect explains a part of the variability of the
data, whether or not there is a threshold for one or
more traits, whether or not to include the effect of a
QTL, and so on. For nested models, the significance of
the ratio of the likelihoods can be approximated using
the chi-square distribution, if there are enough data.
Then, a hypothesis test holds and the null or the alter-
native hypothesis can be selected. After deciding
whether the alternative hypothesis is accepted or not,
the researcher will behave as though the model chosen
was the right one, dismissing the other models as false.
The main problems of this procedure are that it only
can be used for nested models and that it is based on
asymptotic properties. Thus, it is sometimes difficult
to decide whether we have enough data to make the
requisite choices among models.

Selection Indices and BLUP
as Frequentist Predictors

Selection indices appeared in a paper of Karl Pearson
on natural selection (Pearson, 1903), although they
were used much later in animal breeding. First, Smith
(1936) proposed selection indices for several traits in
plant breeding. Apparently, it was Fisher who proposed
the method to Smith, because he says in his article that
section I [Theory] is little more than a transcription of
Fisher’s suggestions. Later, Hazel (1943) applied selec-
tion indices to the field of animal improvement. In 1949,
BLUP appeared as a ML method, which happened not
to be the case (Henderson, 1949, 1950), and it was prac-
tically forgotten for more than 20 yr. Henderson (1973)
gives details of the history and development of BLUP.
Here, we will examine the frequentist properties of the
two methods.

Consider the linear model
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y=Xb+Zu+e (1]

where y is the data vector, b the vector of fixed effects,
u the vector of random effects (breeding values), e the
vector of residuals, and X and Z are incidence matrices.
The predictor

=G V!(y-Xb)

where G and V are the known (co)variance matrices of
the random effects and the data, respectively, and b
is the generalized least squares estimator of the fixed
effects, gives the BLUP of u. Frequentist statisticians
distinguish between estimating a fixed effect, which
remains constant for each conceptual repetition of the
experiment, and predicting a random value, which
changes in each repetition. However, this distinction
seems to be rather unnecessary. When there are not
fixed effects, removing Xb from the formula we obtain
the expression of the selection index, or best linear pre-
dictor.

Inverting V is not easy when thousands of data are
available, as usually happens in animal breeding. Hen-
derson (1963) demonstrated that solving the equations

XX X7Z b X'y

ZXZ7ZZ+Gl|a| |Zy (2]
resulted in the same and b and @ as before. Later,
he found an algorithm to calculate G™! directly from
pedigrees, which simplified the problem and made Eq.
[2] practical. Since then this method has been widely
used by animal breeders. These equations [2] are called
mixed-model equations in the animal breeding lit-
erature.

It should be noted that BLUP is said to be unbiased
in a sense differing somewhat from that employed in
frequentist statistics. Consider one of the elements of
b, say, b for simplicity. Taking an infinite number of
samples, the values of b obtained will have an aver-
age value

E(b) =b

That is, the estimates b are distributed around the true
value b. Then we say that b is an unbiased estimator
of b. However, this condition cannot be met for random
values, because they change in each repetition of the
experiment. For random values we use the expression

E(a) = E(u)

to express unbiasedness. This latter property is much
less appealing than the former one. The predicted val-
ues 0 in infinite repetitions of the experiment are not
distributed around the true value u, because in each
repetition we obtain not only a different G but also a
different u. The risk of the estimator is also different.
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In ggneral, when a quadratic loss function €(6,0) =
(0 — 0)? is used,

Risk (/) = E [€¢(6, )] = E (0 — )
=E[(6-0)-—E®-0) +E® - 0)?
= var (0 — §) + [E®0) — E@®))2

Thus, the risk can be deconstructed into two quantities:
the variance of the error of estimation 6, , and the
square of the bias. For fixed effects, because b is a fixed
value and does not change in the conceptual repetitions
of the experiment, E(b) = b, and the variance of the
error of estimation becomes var(b — b) = var(b). Then,

Risk (b) = [bias (b))% + variance (b)

However, for random effects®, the variance of the error
of estimation is as follows:

variance (u — ) = variance (u) — 2 cov (u,l) + variance
()
= variance (u) — 2 variance(i) +
variance (1)
= variance (u) — variance ().

Then,
Risk (1) = [bias (1)]? + variance (u) — variance(qd).

The variance (u) cannot be changed because it is a
population parameter that depends on the genetic de-
termination of the trait. As information on the random
effect increases, variance (1) increases, tending toward
variance (u), and the quadratic risk decreases. How-
ever, for fixed effects, variance (b) decreases as informa-
tion increases, and the quadratic risk also decreases.
This different behavior of variance (1) and variance (b)
is a typical source of confusion.

There may be an infinite number of estimators having
the same risk but with different bias and variance. To
solve the problem, the predictor with minimum vari-
ance could be chosen from among the unbiased ones,
even if they may have a higher variance of the error of
estimation and consequently a higher risk than some
biased predictors, and BLUP is derived in this way. To
compute BLUP, the variances of the random effects u
and e in model [1] should be known. This is usually not
the case, so it is often recommended to estimate these
from the data by ML methods, or to use estimates from
the literature.

3Here bias(t1) = [E(1) — E(u)], which is different from that normally
used in frequentist statistics for parameter estimation. Bias should
be [E(GJu) — ul, but this is different from zero and, consequently,
BLUP is biased. To state that BLUP is unbiased by changing the
usual definition of bias seems to be a rather liberal use of the language.
Besides, the term best is somewhat misleading. BLUP is only best
among a restricted class of predictors (the “unbiased” ones), and only
when the true variances of the random effects are used.
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The Method of Maximum Likelihood

The concept of likelihood and the method of ML were
developed by Fisher between 1912 and 1922, although
there are historical precedents attributed to Bernouilli
(1782, translated by Kendall, 1961). By 1912 the theory
of estimation was in an early state and the method was
practically ignored. However, Fisher (1922) published
a paper in which the properties of the estimators were
defined and he found that this method produced estima-
tors with good properties, at least asymptotically. The
method was then accepted by the scientific community
and has since been used frequently (Fisher 1912, 1922).

Suppose we know how the samples are distributed
in infinite repetitions of an experiment, or how infinite
samples would be distributed. We will use the following
notation: f(ylu), which means the density function of
the sample y for a “given” value of u. Thus, here the
variable is y because we examine how it is distributed
when repeating the experiment, and u is a fixed value
that we provide in order to examine the probability
density distribution of y for this given value. The ML
method consists of finding which value of u maximizes
the probability of our sample y. To explain the concept
of likelihood and the rationale for using its maximum
we put forth an example.

Consider finding the average weight of rabbits of a
breed at 8 wk of age. We take a sample of one rabbit,
and its weight is yo = 1.6 kg. Figure 1 shows the density
functions of several possible populations from which
this rabbit can come, with population means m; = 1.50
kg, my = 1.60 kg, mz = 1.80 kg. Notice that at y, the
probability densities of the first and third population
f(yolm;) and f(yglms) are lower than that of the second
one f(yglmy). Therefore, it seems more likely that the
rabbit comes from the second population. All the values
f(yolmy), f(yolmsy), fyolms), . . . define a curve with a maxi-
mum in f(yglmy). This curve varies with m, and the
sample y, is a fixed value for all those density functions.
Each value represents an “instant probability,” as
Fisher (1912) first called it, in the sense that it belongs
to a density function. However, it is obvious that the
new function defined by these values is not a density
function, because each value belonged to a different
probability density function. Fisher (1912) proposed to
take the value of m that maximized f(y,m) because
from all the populations defined by f(ygm;), f(yolms,),
f(yolmg), . .. it is the one for a given value of m that
makes the sample y, most probable. Here the word
probability can lead to some confusion, because these
values belong to different density functions and the
function defined with all of them is not a probability
function. Thus, Fisher preferred to use the word likeli-
hood for all the values considered together. Notice that
the method of ML is not the one that makes the sample
most probable. This method provides a value of the
parameter such that if this were the true value the sam-
ple would be most probable. Here we face a problem
of notation: speaking about a set of density functions
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Figure 1. Construction of the likelihood curve.

f(ylmy), f(ylmy), f(ylms) . . . for a given y is the same as
speaking about a function L(m]|y) that is not a density
function and consequently it does not represent proba-
bilities*. We will use the notation L(ml|y) as the one that
expresses the likelihood most clearly.

Fisher (1912, 1922) not only proposed a method of
estimation, but also proposed the likelihood as a degree
of belief different from the probability but that allowed
uncertainty to be expressed in a similar manner. What
Fisher proposed is to use the whole likelihood curve, not
only its maximum, a practice rather unusual nowadays
with the exception of QTL analyses. In these cases there
is the risk of confusing likelihood and probability. For
example, Von Mises (1957) accused Fisher of exposing
with great care the differences between likelihood and
probability, only to forget it later and use the word
likelihood as we use probability in common language.
Today, frequentist statisticians typically use only the
maximum of the curve because it has good properties
in repeated sampling. The method is asymptotically
unbiased, sufficient when there are sufficient estima-
tors, efficient, optimum asymptotically normal, and so
on. Repeating the experiment an infinite number of
times, the estimator will be distributed near the true

4Classic texts of statistics such as Kendall’s (Stuart and Ord, 1991)
contribute to the confusion by using the notation L(y|/m) for the likeli-
hood. Moreover, some authors distinguish between “given a parame-
ter” (always fixed) and “giving the data” (which are random variables).
They use (yjm) for the first case and (m;y) for the second. Thus,
likelihood can be found in textbooks as L(mly), L(ylm), f(yjm), and
L(m;y).

value, with a variance that can also be estimated. But
all those properties are asymptotic, and thus there is
no guarantee with small samples about the goodness
of the estimator. The animal breeder usually works
with a large number of animals, but here “small sam-
ples” does not mean a small total number of data. De-
pending on the problem and on the distribution of the
data, the information for estimating some parameters
can come from a reduced number of data. Besides, the
ML estimator is not necessarily the estimator that mini-
mizes the risk®. Nevertheless, the method has an inter-
esting property apart from its frequentist properties:
any reparametrization leads to the same type of estima-
tor. For example, the ML estimator of the variance is
the square of the ML estimator of the standard devia-
tion, and a function of ML estimators is also a ML es-
timator.

From a practical point of view, the ML estimator
is an important tool for the applied researcher. The
frequentist school developed a list of properties that
good estimators should have but does not give rules
about how to find them. Maximum likelihood is a way
of obtaining estimators with (asymptotically) desirable
properties. It is also possible to find a measurement

5A well-known example is the James-Stein paradox: Suppose we
have K populations normally distributed with the same variance and

we try to estimate the means m; with minimum risk E[Z(mi -

rhi)z}. The maximum likelihood estimator takes the sample means

of each population m = [X;, Xy, . . ., Xx|. James and Stein (1961) found
an estimator on lower risk for K > 2.
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of precision from the likelihood function itself. If the
likelihood function is sharp, its maximum gives a more
likely value of the parameter than other values near it.
Conversely, if the likelihood function is rather flat,
other values of the parameter will be almost as likely
as the one that gives the maximum to the function.
Fisher (1922) introduced the concept of “amount of in-
formation” in order to measure the accuracy of the esti-
mation. This “amount of information” is defined as

Eld logL(uly)/du]?

Logarithms are taken to facilitate an additive measure
ofinformation. For example, if n individuals of a sample
are independent,

L(mlyy, . . ., yo) = L(m|yy) - L(m]ys) - . ..+ L(m|y,),
- Yol

= log[L(m]|y,)] + log[L(m|y2)] + . . . + log[L(m|y,)]

and log [L(mlyy, . .

This quantity is an indicator of the sharpness of the
likelihood function. If the function is sharp, the quan-
tity [d logL(uly)/du] will be high in absolute value, and
thus the amount of information will be large (the square
prevents negative values). Conversely, if the function
is rather flat, this quantity will be low, meaning that
some solutions far away from the maximum have al-
most the same likelihood or “degree of belief.” In small
samples, the likelihood can be asymmetrical or
multimodal, giving varying chances (degrees of belief)
to points that are not near the maximum.

The frequentist school has reduced the problem by
making inferences only at the maximum of this func-
tion. With infinite repetitions of the experiment the
likelihood function would converge asymptotically to a
normal with mean the true value and variance the in-
verse of the information quantity (e.g., Stuart and Ord,
1991). The main problem is that this approximation
is based on the central limit theorem, needing large
samples, but it is not possible to determine how large
the samples should be to ensure normality.

Because likelihood means “rational degree of belief,”
it would be expected that ratios of likelihoods would
indicate differences among models in hypothesis tests,
and some statisticians (Edwards, 1992) recommend the
use of the likelihood ratio reasoning in this way. Unfor-
tunately, likelihoods are not quantities that can be
treated as probabilities; a likelihood four times higher
than another one does not lead to a “degree of rational
belief” four times higher. Nevertheless, the likelihood
ratio has good asymptotical frequentist properties and
is currently used in testing hypotheses.

REML as a Frequentist Estimator

Although Fisher proposed both the method of ML and
the analysis of variance, he never intended to estimate
variance components by ML. It was Hartley and Rao
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(1967) who first proposed this. The ML procedure leads
to complex equations that should be solved approxi-
mately and using iterative algorithms. This causes com-
puting difficulties, and because of them ML procedures
were not used in the field of animal breeding until re-
cently. A conceptual difficulty also appeared when
mixed models were used. The ML estimation of variance
components does not take into account the loss of de-
grees of freedom caused by estimation of the fixed ef-
fects. This can be worrying when the model includes
fixed effects with many levels, as in national genetic
evaluations of dairy cattle. The solution, proposed by a
simple model by Thompson (1962) and generalized by
Patterson and R. Thompson (1971), was called residual
or restricted ML (REML). In recent years, REML has
been the preferred method of animal breeders for vari-
ance component estimation. Following the Harville
(1977) presentation of REML, this method is based on
projecting the data in a subspace free of fixed effects
and maximizing the likelihood in this subspace. The
REML method has the advantage of giving the same
results of the ANOVA in balanced designs (ANOVA is
unbiased with minimum variance for such designs).
Alternatively, ML estimation produces different results
from ANOVA in balanced designs, which is somewhat
disturbing. To better explain the differences between
ML and REML, consider a very simple model:

y=Xp+e=1p+e

where X =1 is a vector of 1’s. The (co)variance matrix
of the residuals is V = Io?, and its determinant [V| =
(6®)™. The likelihood function, when y~N(u,0?) and the
sample is of size n, is

2(-n/2)

L(c?ly) = constant - o exp[—(y — 1u)

(y — 1pn)/202.

The value of ¢® that maximizes L(c?ly) is

6% = (/m)(y — 1p)(y — 1) = (I/n) X(y; — w)?

Notice that p. must be known to obtain the ML estimate
of the variance. Because we do not know ., we substi-
tute the ML estimate of :

A= (1/mn)Ly;

The ML estimate of the variance is:
o3 = UMm)(y — 1) (y — 1)

Although this estimate is a function of another esti-
mate, it is still a ML estimate, and thus it has all the
asymptotic properties from before, and there is not a
formal reason to reject it.

To calculate the REML estimates the data are pro-
jected in a subspace without fixed effects. A projection
matrix K, that follows
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Ky=K 1lp+Ke=K'e

is found (i.e., K has been chosen to follow the condition
K’ 1 =0). For example,

1-10 0 ...... 0
10-10...... 0
K=l100 -10 0
100 0 ...... -1

satisfies this condition.
The variance of K’y is K’'VK = K'Ko? and the likeli-
hood is as follows:

L(o%K’y) = constant - [K'Ko?"2
+exp [(Ky) (KK (Ky)27
where
|K/K0_2| =n (0_2)1‘1—1
The value of o2 that maximizes L(c?K'y) is:
52 =[1/(n - 1)] yKEEK) 'Ky
It can be shown that, in general,
yKEVK) 'Ky
=y -XXVX XVl V!
[y - X XV'X)" X'V'y]
In this case, X = 1, V = Io2. Thus,

XX'VIX) 1 XV1ly =1 [(1e2)11] 7 (VeD1y
= 1[(1/6®) n]™* (1/62)Sy;
=1 (1/n)Sy;

and
vKEKK 'Ky =[y-11/n)2y]’ [y - 1(1/n)Xy;]
=(y - 10)(y - 1)
Thus, the REML estimate of the variance is

6%pm = [1/(n — Dy — 10)(y — 1),

which is similar to the ML estimate, but dividing by n
— 1 instead of by n. Despite the similarity of both esti-
mates, here there is no substitution of a true value by
its estimate. Rather, as a result of the estimation pro-
cess an expression in the formula (1/n)Yy; is coincident
with i.. The degree of freedom lost when estimating w
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is reflected in dividing by (n — 1) instead of n. When
there are many fixed effects, this distinction is im-
portant because the ML estimate is

63 = (Im)(y — Xb)'(y — Xb)
whereas the REML estimate is
%ML = [1/(n - r(X))](y — Xb)(y — Xb)

where r(X) is the rank of X and b is the ML estimate
of b.
With the proposed matrix K, the analysis of variance
is made on the vector
Ky) =[y1 - Y2 Y1~ Y3 - - - Y1 = Yul
in order to avoid the estimation of the mean . By using
differences between data,

Vi—yi=(pn+e)—(n+e)=e — e

W is removed. Several matrices follow the same condi-
tion K1 = 0. This analysis could be also made on
Ky) =[y1-¥2 ¥2-¥3 -+ ¥n-1—Yal

and the same result obtained. This does not mean that
every K would be useful; for example, a K with half of
the rows null will follow the condition K’'1 = 0, as will
the matrix K = 0. It is intended to find matrices that
will not lose information relative to the dispersion pa-
rameters, which implies introducing in K a maximum
number of independent linear contrasts of residuals. It
is not important which K is used. In fact, the usual way
in which REML is found in the literature is in terms
of solutions to the mixed-model equations [2] and com-
ponents of the mixed-model equations, an expression
in which K does not appear explicitly. Notice that in
the example K has dimensions (n — 1) x n (there are
only n — 1 couples of data to calculate their difference)
and a degree of freedom is lost. Thus, summarized infor-
mation was used because the new data vector K’y has
only n — 1 elements. To obtain a geometrical representa-
tion of this sample a n-dimensional space is needed,
but using REML only a n — 1 dimensional space is
required to represent the sample that will be used in
estimation, thus the reference to working in a restricted
space, having lost a degree of freedom. When there are
many fixed effects or many levels of one effect, this is
much more notorious.

As Searle et al. (1992) stated, there is not a clear
(frequentist) argument for preferring REML to ML. In
the former example, the REML estimate was unbiased
but had a higher risk than the ML estimate, although
this may not happen in more complex cases. In other
circumstances, the risk of REML will be higher or lower
than the risk of ML, depending on the true values of
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the parameters and the structure of the data. Restricted
ML became the preferred method among animal breed-
ers, particularly among dairy cattle breeders, for indi-
rect reasons rather than for clear statistical advantages
such as minimizing risk. One reason to prefer REML
is that in practical problems such as genetic evaluation
of dairy cattle there may be many levels of herd-year-
season effect and other effects, and ML does not take
into account the loss in degrees of freedom due to the
estimation of these effects. However, REML is used in
the field of animal breeding as the method of choice
independent of whether there are few or many levels
of fixed effects, perhaps because, as Dawid (1976, cited
by Robinson, 1991) stated for the #-test in the quote
that initiates this paper, “everyone knows that REML
is a good thing.”

The Bayesian School

The Bayesian school was, in practice, founded by
Count Laplace through several works published from
1774 to0 1812, and it had a preponderant role in scientific
inference during the 19th century (Stigler, 1986). Some
years before Laplace’s first paper on the matter, the
same principle was formalized in a posthumous paper
presented at the Royal Society of London and attributed
to a rather obscure priest, rev. Thomas Bayes (who
never published a mathematical paper during his life).
Apparently, the principle upon which Bayesian infer-
ence is based was formulated before. Stigler (1983) at-
tributes it to Saunderson (1683-1739), a blind professor
of optics who published a large number of papers on
several fields of mathematics. Fisher’s work on likeli-
hood in the 1920s and the work of the frequentist school
in the 1930s and 1940s eclipsed Bayesian inference
until the 1960s, when a “revival” was started that has
increased since. The Bayesian paradigm was intro-
duced in animal breeding by Daniel Gianola, first in
work on threshold traits published with J. L. Foulley,
and later in series of papers in which virtually all topics
about animal breeding were addressed (see Gianola and
Fernando, 1986; Gianola et al., 1990 for reviews).

Inference and Precision

In a Bayesian context, the objective is, given the data,
to describe the uncertainty about the true value of some
parameter, using probability as a measurement of this
uncertainty. For example, if the parameter of interest
is the heritability of some trait, the aim of Bayesian
inference is to find a probability density of the heritabil-
ity given the data, f(h%ly), where y is the vector of obser-
vations (Figure 2). When this distribution is obtained,
inferences can be made in multiple manners: for exam-
ple, we can calculate the probability of h? to be between
0.1 and 0.3, by integrating the function between these
values. We can also find which is the shortest interval
in which the probability of finding h? is more than 95%.
If we are interested in point estimation, we can give
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several values of h? calculated from the distribution
f(h%ly). The mode is the value that maximizes f(h?y),
i.e., the most probable value of h? that we can infer
given the data. It can be shown that this is the value
that minimizes risk when the loss function has a null
value for h2=h? and is 1 in other cases. The probability
that the true value of h? is greater than the median is
the same as being less. Thus, the median minimizes
risk when the loss function is |h% — h2. Finally, the
mean minimizes the risk when the loss function is the
quadratic one, (h? — h?)?.

In order to make all of these inferences, the density
function f(h%y) should be obtained. To do this, we will
use the Bayes theorem. The probability of two events
happening together is

P(A,B) = P(AIB) - P(B) = P(BJA) - P(A) [3]
Thus,
P(AIB) = P(B|A) - P(A)/P(B)
In the present case:
f(h?ly) = f(ylh?) f(h®/f(y) o f(y|h?) f(h?) (4]

where, < means “proportional to.”

Notice f(h%ly) is a function of h2, but not of y, which
is given (it is “fixed”); therefore, f(y|h?) is a function of
h? but not of y, which means that f(yh?) is the likeli-
hood, as we defined it before. Moreover, f(y) is a constant
for the same reason: it does not depend on h?, and y is
fixed. Finally, f(h?) is the probability of h? that does
not depend on our data. The criticism of the Bayesian
inference is focused on this last probability, called prob-
ability a priori because it can be defined independently
of the data and before the start of the experiment (e.g.,
Glymour, 1981). In defining likelihood, we stressed that
it was the probability of the sample if the value of the
parameter were the true value. Now we weigh this by
the probability that the parameter is indeed the true
value. Sometimes this prior probability is well-defined
(e.g., the prior probability of obtaining a recessive indi-
vidual when crossing two individuals with a heterozy-
gous trait is 1/4), but for heritability the value of this
prior probability may not be obvious. The density func-
tion f(h?ly) is called posterior probability, posterior den-
sity, or, more commonly, posterior distribution. A com-
mon expression of this posterior density is also

f(h?ly) o L(h?y) f(h?)

containing L(h?ly), which is the density function of the
data f(y|h?), but when considered as a function of h? is
the likelihood. We will use this notation because it is
more coherent with the use of the bar “” that means
“given.” Thus, L(h%ly) is a function of h? given the data.

Strictly speaking, all probabilities of a parameter are
based on a certain set of assumptions. These probabili-
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ties cannot be constructed without them (e.g., the as-
sumption that the sample results from a random pro-
cess, that the sample space is uniform, that the observer
does not influence the observation, etc.). If we call H
the set of hypothesis used to describe f(h?), the right
notation should be f(h?[H), and therefore the theorem
should be expressed as f(h%y,H) o L(h%y,H) f(h?H),
but we will suppose this implicitly in order to simplify
the notation.

In the Bayesian school, there is not a unique possibil-
ity for point estimation, and the point estimate of choice
can be based on the risk function or other reasons.
For example, if the prior density is bimodal, the mean,
which minimizes the quadratic risk, can have a much
lower probability than the modes. In this case, the point
estimate is not consistent with the uncertainty about
the parameter h% Another example of the risk of using
point estimation is the case in which an asymmetric
posterior density of a genetic correlation gives a nega-
tive mode but a much higher probability of being posi-
tive (Figure 3).

Confidence intervals for the point estimates can be
asymmetric. In the case of asymmetric posterior densi-
ties, if we prefer the shortest confidence interval, it is
necessarily asymmetric. There is a practical difficulty
for the estimation of confidence intervals, or “credible
regions” as Bayesians prefer to call them. They require
knowledge of the posterior density, and it is necessary
to integrate this density between the limits of the inter-
val in order to know the probability of the interval.
Moreover, to calculate the posterior density it is neces-
sary to know f(y), a value difficult to calculate, because

fly) = [f(y, h?) fth?) d(h?)

Because y is a vector, all these integrals are multidi-
mensional and difficult, if not impossible, to calculate,

- MODE

\ MEDIAN

MEAN
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even by approximate methods. Until recently this has
been a weak point in application of Bayesian methods,
and it has been the main hindrance to their develop-
ment in animal breeding. Now, MCMC methods (Gibbs
sampling, Metropolis-Hastings, etc.) have solved the
problem.

Because there are not infinite repetitions of the exper-
iment, there is nothing that can be considered as “bias.”
Moreover, there are no “fixed effects,” because all pa-
rameters are random variables in a Bayesian context,
including those that are considered “fixed” in a fre-
quentist context. Uncertainty is expressed as the proba-
bility of a parameter or an effect having a particular
true value, so they must be random variables.

The result of a test of hypothesis is different in the
Bayesian school. For example, if the hypothesis to be
tested (H,) is that two breeds have the same mean for
a trait, and the alternative (H;) is that the means are
different, in a Bayesian context it is calculated as

P (Holy)/P(Hily)

Thus, if this ratio is, for example 7, the hypothesis of
having equal means is seven times more probable than
the hypothesis of having different means. These poste-
rior distributions can be expressed as

P(Holy) _ P(y[Ho)-P(Ho)/P(y)
P(Hily)  P(y[H.)-P(H)/P(y)

P(Hy)
P(H,)

= BF-

wherein the ratio of the likelihoods is called the Bayes
factor (BF). Because the prior probabilities of both
hypotheses are often considered equal (many times in
order to give a false impression of objectivity), Bayes

Figure 2. Example of a probability density for heritability (h?) given the data (y) and estimates from posterior distri-

bution.
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Figure 3. Asymmetrical posterior distribution for a genetic correlation (rg) illustrating an inconsistency in sign

between the mode and the majority of estimates.

factors coincide with the ratio of posterior probabilities
and are used to decide which model is chosen.

Notice that for nested models the frequentist school
also uses likelihood ratio; thus, sometimes the numeri-
cal result of a frequentist test and a Bayesian test can
be the same. However, the interpretation is completely
different. In a frequentist context, this ratio is used
because under infinite repetitions of the experiment it
will be approximately distributed as a chi-square. Thus,
areas of acceptation and rejection of the hypothesis are
established and a decision is made based on this distri-
bution. In the Bayesian context, the ratio of likelihoods
is used because (under equal prior probabilities) it is
equal to the ratio of posterior probabilities and gives
an exact account of the evidence of one hypothesis over
the other. This is neither restricted to nested hypothe-
ses nor is it an approximated result. The procedure is
also not restricted to either of only two hypotheses. The
ratio of the likelihoods is the part of the inference that
is supported by the data and shows how the data modify
the prior state of knowledge to obtain the posterior one.
Lavine and Schervish (1997) give a detailed comparison
of Bayes factors and P-values from likelihood-ratio
tests.

Although Bayes factors summarize the information
provided by the data, it is important to notice that, in
a Bayesian context, they do not have any inference
property without considering the prior information. No-
tice that P(y|H,) is the probability of obtaining the cur-
rent data only if the hypothesis Hy is true. We need to
multiply P(y|Hy) by the probability that this hypothesis
is true, P(Hy), and to do the same with P(y|H;) and

P(H,), in order to make proper inferences®. When a
model is chosen only under the information provided by
the Bayes factor, equal prior probabilities are implicit.

An interesting procedure for inferences that has no
counterpart in frequentist statistics is the Bayesian
model averaging. It consists of simultaneously using
several models for inferences, weighted according to
their posterior probabilities. For example, if we are in-
terested in estimating the heritability of a trait and we
have two models constructed under the hypotheses H
and H; (for example, with and without a particular
effect), then

P(h’ly) = P(h? Holy) + P(h? Hily)
= P(h?|Hy, y) P(Holy) + P(h’|H,, y) P(Hily)

where P(h?H,, y) is the posterior distribution of h? un-
der the first model and P(Hyly) is the probability that
this model is true, and the same holds for the second
model. This can be generalized to several models simul-
taneously. A tutorial for Bayesian model averaging has
been published by Hoeting et al. (1999).

5For example, if I want to infer the height of the typical Scotsman
and I take a sample of one of them, obtaining a height of 1.70 m, the
hypothesis that maximizes the probability of my sample is not that
the average Scotsman measures 1.70 m, but that all Scotsmen mea-
sure 1.70 m. Because I have prior information about them, I know they
are humans, and that the height of humans follows an approximately
normal distribution, and so on, then I give a null prior probability
to this hypothesis and I infer on other grounds.
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The Use of Prior Information

Sometimes there is well-defined prior information on
the parameters to be estimated. In these cases the use
of prior information is not controversial, as we will now
see taking an example by Fisher. Let us take a trait
controlled by a single gene with two alleles with domi-
nance, for example, black skin is dominant over brown
skin in some mice. We try to know whether a black
mouse, son of a heterozygous mates (Aa x Aa), is homo-
zygous (AA) or heterozygous (Aa). In order to assess
this, we mate this mouse with a brown (recessive)
mouse, and we obtain seven offspring, all of them black.
What is the probability that the black mouse is hetero-
zygous, given this data? According to the Bayes theorem
shown in Eq. [4],

P(AAJy = 7 black descendants)

= L(AA]y = 7 black descendants) -
P(AA)/P(y = 7 black descendants)
P(Aaly = 7 black descendants)

= L(Aaly = 7 black descendants) -
P(Aa)/P(y = 7 black descendants)

We are trying to test whether the black mouse we
have is or is not homozygous. The expectation from a
mating between two heterozygotes is Y4 homozygous
black, Y2 heterozygotes, and ¥4 homozygous brown. A
black mouse from such a mating has, prior to any test-
mating, a probability of 1/3 of being homozygous and
of 2/3 of being heterozygous, because mating Aa with
Aa gives three types of black animals, AA, Aa, and aA,
with the same probability. We represent as Aa both of
the heterozygotes Aa and aA. Thus, we have P(AA) =
1/3, and P(Aa) = 2/3.

After performing the experiment, the likelihood of
the black mouse being homozygous (AA) is 1; that is,
given seven black offspring, because if the black father’s
genotype is AA, all descendants from crossing an AA
mouse with brown (aa) mice are expected to be black
(Aa). Thus, L(AAly = 7 black descendants) = 1. Further,
the likelihood of the black mouse being heterozygous
is (1/2)7, given seven black offspring, because if the black
father’s genotype is Aa, the probability of obtaining one
black descendent would be 1/2, because the descendants
of a cross between Aa and a brown (aa) mouse are
expected to be Aa (black) and aa (brown) in equal pro-
portion. Thus, the probability of obtaining seven black
mice is (1/2)" and L(Aaly = 7 black descendants) = (1/2)".

Now, there are two possibilities of having seven black
descendants. Either the individual is homozygous and
had seven black descendants, or it is heterozygous and
had seven black descendants. Thus, the probability of
having seven black descendants is:

P(y = 7 black descendants)
= Prob (AA and y = 7 black descendants)
+ Prob (Aa and y = 7 black descendants)
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According to the laws of probability shown in Eq. [3],

Prob (y = 7 black descendants, and AA)

= P(y = 7 black descendants|AA) - P(AA)

= L(AAly = 7 black descendants) - P(AA)=1-1/3=1/3
Prob (y = 7 black descendants, and Aa)

= P(y = 7 black descendants|Aa) - P(Aa)

= L(Aaly = 7 black descendants) -

P(Aa) = (1/2)" - (2/3) = 1/192
and thus,
P(y = 7 black descendants) = 1/3 + 1/192

Thus, the probability that our black mouse is homozy-
gous (AA), given that seven descendants were black, is

P(AAly = 7 black descendants) = (1/3) - 1/(1/3 + 1/192)

and the probability that our black mouse is heterozy-
gous (Aa) and had seven black descendants when cross-
ing it with a brown (aa) mouse is

P(Aaly = 7 black descendants)
= (1/2)7 - (2/3)(1/3 + 1/192)

This is the desired answer.

Selection indexes and other related methods (BLUP
or combined selection) use genetic parameters that are
presumed to be known. This is a common practice in
animal breeding and its use is not controversial. Let
us consider the model

y=Zu+e

where y is the data vector, u the genetic values, e the
residuals, and Z the incidence matrix. Our objective is
to find the expression of the posterior density of the
genetic values f(uly). We suppose

u ~ N, As?) e~ N(0, Is2)
thus,

f(u) = constant - exp{(-1/202) u’ A u},
L(uly) = constant + exp {(-1/2¢2) (y — Zu) (y — Zu)}, and
fluly) o« L(uly) - flu) = constant - exp {(~1/20?)

(y-—Zu)y (y-Zu)+uw Alual}

where o = ¢%/02.
This posterior density f(uly) has its maximum in

a=ZZ+Aa) Zy
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which is a well-known result of the theory of selection
indexes; it is the best linear prediction of the genetic
values. From a Bayesian point of view, because the
posterior density is symmetric, this point estimatoris at
the same time the mean, median, and mode. Confidence
intervals can be obtained from f(uly) as we have seen
before.

In most cases, it is difficult to quantify the prior infor-
mation pertaining to a parameter. For example, how
should the prior information about the heritability of
litter size be quantified? In these cases, the non-Bayes-
ian statisticians contend it is not possible to apply Bayes
theorem and the problem has no solution if we want to
find probabilities about the true value of the parameter.
Within the Bayesian school, several solutions have
been proposed.

For many cases, probability defined as a frequency is
too restrictive a concept to help in solving the inference
problem. Thus, expressing the probability as a subjec-
tive value between 0 and 1 that indicates the degree of
belief of the researcher about the value of the parameter
is preferred. Notice that subjective does not mean arbi-
trary. As Keynes (1921) stressed, this subjective proba-
bility should be well-founded, and a scientist should be
able to persuade other scientists about the value of this
subjective probability. For example, let us consider the
market price of a rabbit carcass. Before taking samples
from different markets, we can easily agree that it will
be less than 100 euro/kg and more than 0 euro/kg. We
can be more precise and think that it will be unlikely
that the price will be more than 10 euro/kg or less than
1 euro/kg. Following in the same way, we can assign
probabilities to different prices until a probability dis-
tribution would be of general agreement. If not, we can
compare the results given by two or three possible prior
densities, and base our decision on the one we believe
in more. This is quite easy to do for univariate problems
but becomes factually impossible for multivariate prob-
lems. For example, in estimating genetic parameters
for three traits we have to determine the prior probabil-
ity that the first trait has a heritability of 0.1, that the
second trait has a heritability of 0.3, the third one has
a heritability of 0.3, the genetic correlation of the first
and second is —0.7, that of the first and the third is 0.1,
and that of the first and second is 0.4, and so on. And
this should be done for every possible case! Trying to
determine all possibilities can lead the researcher to a
psychological crisis; therefore, this way of working is
not useful for many animal breeding problems.

Having enough data, the prior probability has little
influence on the final result (the posterior density). This
argument is based on the practical fact that experi-
ments are often performed when the information about
the topic of the experiment is scarce, then prior opinions
are vague and it should not be too expensive in most
cases to have data enough to override the prior opinion.
In these cases, prior opinion is not particularly well
defined and it is usual to take prior density functions
that facilitate computing the posterior density, avoiding
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paradoxes and inadmissible results. This argument was
introduced in the literature by Jeffreys (1931) and has
become popular given the difficulties of using prior in-
formation accurately (e.g., Blasco et al., 1998). Although
it is somewhat deceptive to use a theory based on the
harmonic use of prior information and information pro-
vided by the data, this solution is practically acceptable.
Analyzing small experiments with expensive data re-
mains problematic because samples are necessarily
small and prior information will affect the results.
Thus far, even though the procedure of associating
degrees of belief to probabilities is controversial no theo-
retical difficulties have appeared. There will be re-
searchers that prefer not to subjectively establish the
prior probability. However, even if this position is ac-
cepted the resulting inference does not lead to para-
doxes or contradictions. The problem arises when it
is intended to represent the prior ignorance. The first
Bayesians (Bayes included) used a technique that
Keynes (1921) called “Principle of indifference” to de-
scribe a situation in which there was no prior informa-
tion and all possible events have the same probability.
To admit this principle implies that in the familiar
example of a bag of white and black balls that is often
used to teach probability, all possible drawings have
the same prior probability. For continuous variables
this means that the prior density is a line parallel to
the x-axis in a determined interval, and because of that
they are known as “flat priors.” This terrible postulate
is the origin not only of philosophical, but also of mathe-
matical, problems. For example, if we want to represent
absolute ignorance about the value of the heritability
and we say that all possible prior values have the same
probability in the interval [0, 1], then P(h? < 0.5) = %.
But the event h? < 0.5 is the same as the event h* <
0.25, and therefore their probability should be the same
P(h* < 0.25) = %. This shows that h* is more proximal
to 0 than to 1. Consequently, we shall say that we have
no information about h? but we do have information
about h*, which is absurd. The final consequence is that,
as Bernardo (1997) remarked, non-informative priors
do not exist. There is no easy answer to this problem.
The admission of validity of flat priors for represent-
ing ignorance is a popular solution, but it does not seem
to be well founded. Flat priors are frequently called
“non-informative priors.” This is not true, because all
priors are informative, as we have seen. We can main-
tain that we have no information about h? but we do
about h*. For example, if we admit that h'® has a flat
prior between 0 and 1, this implies P(h'® > 0.5) = 1,
thus P(h2 > 0.5Y8) = P(h? > 0.92) = %, which few people
would find plausible. Box and Tiao (1973) sustain this
rather unconvincing proposal. As Edwards (1992) re-
marks, ignorance about a parameter implies ignorance
about any transformation. To say we ignore the prior
values of a parameter is not the same as saying we
think all of them have the same probability.
Alternatively, ignorance may be represented with re-
spect to the likelihood. The supporters of this solution
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think ignorance is only a scale problem and that by
changing the scale prior densities can be found that do
not change with reparametrization. First, we have to
define what we mean by absence of information. From
the Bayes theorem we see that all information coming
from the data is contained in the likelihood, whereas
the prior information is independent of the data. Prior
ignorance should be expressed in a scale in which the
likelihood will not change. Jeffreys (1961) first proposed
this solution, and it can be found fully developed by
Box and Tiao (1973). Because it is not always possible
to find such scale, approximations may be required, and
they work well with large samples (Box and Tiao say
“moderate sample sizes” to avoid obvious criticism).
However, when prior ignorance should be expressed
about two parameters at the same time, such as mean
and variance, these functions either do not exist or they
lead to paradoxes. Thus, Jeffrey’s priors have not been
applied successfully in animal breeding, despite being
currently used in other fields of scientific inference. This
is most likely because animal breeding problems are
multivariate in one way or another (we usually have
environmental effects, permanent or litter effects,
multitrait problems, etc.).

Many times the suggested prior functions are not
proper probabilities (they do not integrate to 1). For
example, a flat prior gives the same probability values
from —e to +oo. These functions can lead to posterior
densities that do not integrate to 1 and thus they are
not probabilities, making the inference impossible. It is
not always easy to detect an improper posterior density,
particularly when they are estimated using MCMC
methods such as Gibbs sampling. For example,
Hoeschele and Tier (1995) found improper posteriors
for herd-year-season effect in a threshold model when
they used an improper flat prior for this effect. Due to
this difficulty, Hobert and Casella (1996) recommend
always using proper prior densities, unless the im-
proper prior being used belongs to a class of improper
priors that leads to proper posterior probabilities. How-
ever, in using improper priors the rather philosophical
problem of using a description of prior uncertainty that
is not a probability still persists. Moreover, it is difficult,
from a theoretical point of view, to sustain that prior
ignorance depends on the true value of an unknown
population parameter.

With prior ignorance, or in checking the robustness
of results by comparing them with the case in which
there is no prior information, Bernardo (1979) proposed
calculating posterior densities that give maximum
weight to the data. The advantage of this solution is
that the posterior density is directly calculated, ensur-
ing that it is a proper probability density. For these
authors:

The problem of characterizing a “non-informative” or “ob-
Jective” prior distribution, representing “prior ignorance”,
“vague prior knowledge” and “letting the data speak for
themselves” is far more complex that the apparent intuitive
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immediacy of these words would suggest . . . “vague” is it-
self much too vague an idea to be useful. There is no “objec-
tive” prior that represents ignorance . . . the reference prior
component of the analysis is simply a mathematical tool.

Bernardo and Smith (1994)

The main problem with this solution is an operative
one: all of these priors are difficult to calculate, particu-
larly in the case of selected data, and they change with
the model used. In the multivariate case, there is also
a distinction between the parameter of interest and
nuisance parameters. Depending on the order in which
the nuisance parameters are disposed for conditionali-
zation, the reference prior obtained for the parameter
of interest can be different (e.g., Robert, 1992). This is
somewhat puzzling, because it means that the “mini-
mum amount of information” changes with the order
in which the analysis is conducted. Of course, if it is
admitted that priors are “simply mathematical tools,”
then the problem vanishes.

What can be done when there is no prior information?
The easiest solution is to use several priors and observe
any effect on the results. For example, in estimating
the heritability of a new trait, use of vague prior infor-
mation around several values of h? may result in differ-
ent posterior distributions. If the results are similar
regardless of the prior distribution used, the informa-
tion in the data has overwhelmed the prior information
and the lack of prior information is of no consequence.
Although the posterior distribution was obtained under
the false hypothesis of the existence of prior informa-
tion, this hypothesis would be irrelevant to the re-
sults obtained.

BLUP and Selection Indexes as Bayesian Estimators

Ronningen (1971) and Dempfle (1977) remarked that
BLUP can be considered as a Bayesian estimator. Giv-
ing the linear model [1]

y=Xb+Zu+e=Wt+e

where t’ = [b’ u’] and W = [X Z], the Bayesian objective
consists of finding the function f(uly) to be able to make
inferences. In a Bayesian context there are no fixed
effects. Thus, selection indexes are still a particular
case without the b effects. The objective is to estimate
the vector t from the data y. First, determine f(t[y).
Applying Bayes theorem [3] results in

f(tly) = constant-f(ylt) f(t)
If f(ylt) = N (Wt, I2), then
f(ylt) < expl(y — Wt)’ (y — Wt)] (4]
Suppose that the prior density of t is also normal. This

may be reasonable for the genetic values, but it may
not be reasonable for the environmental values. Then,
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Et)=E [b’u’] = [my 0] =m, and

So

V = Var (t') = Var[b’ u’] —{0 G}
where m and S are the prior mean and variance of the
environmental effects. Also suppose that environmen-
tal and genetic values are uncorrelated, although this
is not always true. For example, in dairy cattle it is
well known that the “best” farms tend to buy the “best”
semen. Avoiding this correlation between environmen-
tal and genetic effects was one of the reasons Henderson
(1973) proposed considering farm effects as fixed. With
small farms the herd effects are not well estimated,
which has consequences for the estimation of genetic
effects and creates a problem with no easy solution.

f(t) < expl(t — m)’ V1 (t-m)]
fltly) o f(y[t) f(t) o
expl(y - Wt)' (y = Wt) + (t —m) V! (t — m)]

There are three Bayesian estimators that can be
taken from the posterior distribution f(t|y): mean, me-
dian, and mode. Because this is a normal distribution,
all of them are coincident. We will calculate the mode,
which is the maximum of the distribution. Deriving
with respect to t and equating to zero, we obtain the
equation

WW+VIt=Wy+V'im

or, in expanded form

XX+S! XZ b| |Xy+S'm,
ZX ZZ+G'|u| Zy

These are similar to the mixed-model equations [2],
but here we include the mean of the environmental
effects my, which is not null, and the matrix S, which
for the environmental effects is equivalent to the G
matrix. If we apply the principle of indifference and the
fixed effects can have any value in the interval ]—co,
+oo[, their variance a priori tends to infinity and conse-
quently S7! tends to zero. If S7! is null, we obtain the
mixed-model equations [2]. Therefore, BLUP is a
Bayesian estimator (mode, median, and mean of a nor-
mal posterior distribution) constructed using flat priors
for the environmental effects and a normal prior with
zero mean and variance G for the genetic effects. This
does not mean that BLUP is an optimal Bayesian esti-
mator. It is not reasonable to suppose that the environ-
mental effects can take any value with the same proba-
bility. Usually, prior information is available, at least
for the maximum and minimum values that an environ-
mental effect can take. Frequently, prior uncertainty
about the possible values that an environmental effect
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can have could be expressed by defining a prior normal
distribution. The use of flat priors has its only justifica-
tion as reference priors and because it facilitates calcu-
lation of the posterior density.

ML and REML as Bayesian Estimators

If any value of h? has the same prior probability’,
f(h?) = constant (which is only admissible in the interval
[0,1], then Eq. [3] becomes

f(h?y) o fly|h®)

and thus the posterior distribution is calculated directly
from the likelihood. This distribution is usually easy to
calculate. Often the data are thought to be distributed
either normally or according to another known function.
Notice that, although using the same function, the
Bayesian inference is based on a completely different
principle from ML. Here, the likelihood is used because
it is proportional to f(h%ly), which is a distribution of
probabilities, whereas frequentist inferences based on
the likelihood result from the good properties that its
maximum has in conceptually infinite repetitions of
the experiment.

Harville (1974) was the first to realize that REML
could be considered a Bayesian estimator. Taking the
mixed model [1], Bayesian inferences are made from

the complete posterior density f(b, u, 02, 62,y). The ML

estimators of b, o2 and o2 are coincident with the mode
of the marginal posterior density

fb, 02,02ly) = [f(b, u, 0%, o2ly) du

whereas the REML estimators of 02 and o2 are coinci-
dent with the mode of the marginal posterior density

flo?,02ly) = [[fb, u, 02, 62ly) db du

when prior values are assumed to be flat for b and
normal for u, as in the case of BLUP. Note that there
is no REML estimation of the “fixed” effects b, because
it is made in a space free of these effects.

The mode of the multivariant distribution f(b, 02,02y)
should not be the same, in general, as the mode of the
bivariant distribution f(¢2,02ly). Integrating out the en-
vironmental effects means considering all possible val-
ues for b, weighting them by their probabilities, and
summing all these possible weighed values. This is a
Bayesian justification for using REML instead of ML,
and it is clearer than the frequentist one. Also notice

"Strictly speaking, all the intervals of the same length have the
same probability; the probability of a concrete value is zero, because
there are infinite points in the interval [0, 1]. The same can be said
for the flat priors of the previous section.
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that from a Bayesian point of view the weighing argu-
ment can be continued. Thus, it can be proposed to
estimate the variance components from the mode of the
marginal posterior densities

flo2y) = || fb, u, o2, o2y) db du do?
flo2y) = JI[ fb, u, 02, 62y) db du do?

This is what Gianola and Foulley (1990) propose.
Originally, their reason to take the mode was a practical
one: it could be calculated by finding the maximum
of the marginal posterior densities. Now, the modern
MCMC techniques (Gibbs sampling, Metropolis-Has-
tings, etc.) make finding the mode unnecessary because
all of the posterior density can be inferred.

Bayesian Estimators of Genetic Values
and Dispersion Parameters

Independent of any Bayesian interpretation of the
methods used in animal breeding that have been de-
rived from a frequentist perspective, there is a Bayesian
way of estimating breeding values and genetic parame-
ters. We will maintain the notation of the mixed model
[1], although there are not fixed effects in a Bayesian
context. Thus, here b is a random vector of the environ-
mental effects. The most general problem is to find the
posterior density f(b, u, 02, o2ly) and to make inferences
from it or from the marginal densities f(bly), f(uly),
f(o2ly), and f(62y). The likelihood and the prior distribu-
tions are needed.

f(b, u, o2, oZy) = flylb, u, 02, 02) f(b, u, 02, 02)/f(y)

It is usually assumed that priors for dispersion pa-
rameters are mutually independent between them and
independent of priors for genetic and environmental
values. Moreover, because we do not know the joint
prior distribution f(b, u), we will assume that priors
for b and u are independent. Thus,

f(b, u, 02, 02) = f(b) f(u) f(o?2) f(o?)

In some cases b and u are not independent a priori,
as in the example of the “best” dairy farms buying the
“best” semen to generate replacements for their cows.
However, f(b) can be assumed constant to override the
problem, as in the Bayesian interpretation of BLUP and
REML, with similar advantages and disadvantages. If
b and u are assumed independent, it seems appropriate
to give informative prior values for b. This will often
lead to a symmetric function (e.g., a normal distribu-
tion). In the case of very vague prior opinions, a flat
prior may be used within the limits of an interval that
fixes the maximum and minimum prior values for the
effect. However, our prior opinion about the genetic
determination of a trait is usually based on our prior
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opinion about the heritability of the trait and is affected

by o2 and o2 at the same time. Thus, it is not the best
solution to suppose the independence of both variance
components. One way of facilitating the expression of
this prior opinion is to reparameterize the prior density
and to express it as a function of heritability, as Sore-
nsen (1999) proposed. Nevertheless, in an experiment
it is expected that prior opinions should be vague and
most of the information should come from the data. If
prior opinions about the parameters of interest are very
sharp then there is no reason to perform the ex-
periment.

In the past, it was important to find prior functions
that “conjugate” with the likelihood, in order to find
known functions and simplify the problem of deriving
inferences from a posterior density. The problem was
that if the posterior density was not a function of some
type that had been studied before, then it was compli-
cated to derive inferences. For example, if the posterior
density was normal, about 95% of its elements were
known to be within approximately 2 SD of its mean.
However, if the posterior density was not a function of
some known type then it was difficult to find probability
areas, because it was necessary to integrate the func-
tion within limits. Another difficulty was calculation of
f(y), for which multiple integrals should be taken. The
Bayesian procedures were limited to the use of asymp-
totic properties, and calculating the mode of the distri-
butions. Nowadays, the use of MCMC simulation allows
deriving inferences without regard for the functional
form of the posterior density. Nevertheless, conjugate
functions are used because they facilitate the numeric
task of Gibbs sampling (i.e., sampling from conditional
functions). Thus, inverted chi-square functions are used
for variance component priors instead of using the repa-
rameterization that allows expressing prior opinions of
heritabilities. Inverted chi-square functions are used
not only for mathematical commodity, but also because
these functions depend on two parameters that allow
expression of almost any kind of prior opinion (see, for
example, the graphs of Lee, 1997). Animal breeders
tend to call these parameters “degree of belief v’ and
“dispersion parameter S,” thinking the first leads to
drawing more or less sharp densities and the second
controls dispersion of the density prior, but this is incor-
rect. The shape of the function depends on both, and a
prior inverted chi-square can be made sharp by chang-
ing S. Moreover, v and S do not have to be natural
numbers, because they do not represent degrees of free-
dom. They should be taken only as two parameters that
describe the shape of a prior belief, and nothing else.
The values of these parameters should not be estab-
lished by appealing to external “objective” arguments,
such as the degrees of freedom of the sampling distribu-
tion of the variance or other reasons not related to the
real prior opinion of the researcher. These values are
completely arbitrary insofar as they lead to a prior func-
tion that describes a prior state of opinion about the
variance.
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Bayesian estimators of the breeding values based on
the marginal density f(uly) take into account the uncer-
tainty about the variance components and the uncer-
tainty about environmental effects. All possible values
of variance components and environmental effects are
weighted according to their probability and considered
in the estimation of the breeding values, because

fluly) = ]I fb, u, 02, o2ly) db do?do?

This is particularly useful for traits that are difficult
or expensive to measure (for example, meat quality
traits or traits that require surgical interventions), be-
cause in these cases the database may not be large
enough to estimate the variance components with preci-
sion and the literature may be scarce. It is also useful
when the database is large and variance components
are estimated using subsets of it.

Bayesian estimators of variance components based
on the marginal densities of the variance components
have the advantage of taking into account the uncer-
tainty associated with the other parameters. When they
are estimated with MCMC techniques, there is a sup-
plementary advantage: the posterior density of the heri-
tability and genetic correlations f(h?y) and f(r,ly) can
be calculated immediately (see Appendix I).

Discussion

Bayesian Methods and Scientific Inference

Until recently, it was thought that the main differ-
ence between the two schools of inference lay in the use
of prior information. The frequentist school produces
inferences based on the data and prior knowledge of
the distribution of estimators in the sampling space.
The problem of the frequentist school exists in the use of
probabilities without using prior information, as their
founders wanted (see Pearson, 1966). In this case, the
distribution of the estimator is used for inferences, in-
stead of the distribution of the parameter, which leads
to a rather unnatural form of expressing uncertainty
about the results of an experiment. Fisher was perfectly
conscious of the loss of clarity that this method implied,
and wrote:

Bayes perceived the fundamental importance of this
problem and framed an axiom, which, if its truth were
granted, would suffice to bring this large class of inductive
inferences within the domain of the theory probability; so
that, after a sample had been observed, statements about
the population could be made, uncertain inferences, indeed,
but having the well-defined type of uncertainty characteris-
tic of statements of probability

Fisher (1936)

The Bayesian school makes inferences from probabil-
ities associated with values of the parameter of interest,
which is a more natural way of expressing uncertainty.
The main problem of this school is to be sure that these
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probabilities are indeed probabilities, because the prior
information used to derive them can be nonexistent or
difficult to quantify precisely.

Frequentist and Bayesian methods produce different
answers to the problem of induction®. Basically, the
principle of induction consists of admitting that it is
possible to make inferences about the population pa-
rameters from samples. The problem of induction ap-
pears when this possibility is denied, even with some
degree of probability (Popper and Miller, 1983). The
solution proposed by Hume (1738) was psychological:
when I observe the repetition of an event (for example,
Friesian cows produce more than Jersey cows), I expect
that in the future the behavior of the event would be
the same. This is an unsatisfactory solution. From the
early attempts of Kant (1781) until the more modern
results of Russell (1948) and Popper (1972) there has
been a search for a rational justification for believing
causation can be associated with repeated phenomena
and general conclusions can be derived from samples.
Russell (1948) proposes five postulates that, if admitted
(and this is arbitrary), would justify inductive infer-
ence. Popper (1972) simply helps in a better demarca-
tion of the problem without bringing anything new to
bear. It is currently admitted that the induction prob-
lem does not have a logical-deductive solution, and re-
search is focused on examining the “good reasons” for
believing in the induction principle, and the nature of
these reasons (Bird, 1998). Frequentist statisticians,
such as Neyman and Pearson, preferred to speak about
“the scientist behavior” instead of induction. However,
Fisher believed that we could associate probabilities
with events, and he and Sir Harold Jeffreys remarked
on the principal differences between both schools facing
this problem (see Lane, 1980, for a summary of the
discussion). The main problem of the frequentist solu-
tion is that inference is associated with distributional
assumptions and often with unknown parameters of the
population. The main problem of the Bayesian school is
that probabilities often reflect states of belief instead
of “objective” probabilities.

Nevertheless, a good way of understanding the induc-
tion problem is to look at the Bayes theorem. It is neces-
sary, in order to associate a probability with an event,

8The problem of induction was presented in its modern form by
the Scottish philosopher Hume, although as Copleston (1985) re-
marks the essence of the problem (the difficulty of associating effects
to causes) was outlined at least from the second century. Kant looked
for a rational justification of the principle in the prior knowledge.
But the prior knowledge of Kant only has its name in common with
the Bayesian prior knowledge. Kant says: “It is one of the first and
most important questions to know whether there is some knowledge
of experience. Call this knowledge ‘a priori’ and make distinction
from the empiric knowledge in that the sources of this last one are
‘a posteriori’, based in the experience” (Kant, 1983). Of course, no
Bayesian scientist would use priori knowledge as something not based
in previous experiences. Although there is a Bayesian statistician
that quotes Kant (Robert, 1992), I do not find any relationship be-
tween Kant’s philosophy and the Bayesian paradigm.
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to know its a priori probability. For example, to know
how Spanish Landrace performs for litter size, a sample
of 20 sows can be evaluated for litter size in their first
parity. Say an average of five piglets born is observed.
This seems a very unlikely outcome a priori. Because
no external a priori probability is available, previous
beliefs are used to express this a priori knowledge.
These beliefs are not arbitrary, but are based on knowl-
edge of swine performance and the performance of Lan-
drace in other countries. Notice that these beliefs can
be easily shared by many other colleagues, and they
should not represent any problem in the analysis, inso-
far as they are vague (if they are not, there is no reason
to perform the experiment). Frequentist scientists also
use subjective beliefs in discussing results and compar-
ing them with other published results. If a frequentist
scientist finds a very unlikely value for a parameter
then the tone of the discussion will cast doubt about
its validity, if it is published at all. Frequentists and
Bayesians do not differ in the use of subjective prior
information, but in how they use the information.

The prior density is constructed from a given set of
assumptions (for example, that previous experiments
are reliable, the samples are taken at random, the sam-
pling space does not contain irregularities, etc.). Be-
cause the truthfulness of these assumptions cannot be
known (and this is the heart of the induction problem),
strictly speaking, inferences about the population pa-
rameters cannot be made. In the future, it may be dis-
covered that the samples were not taken at random or
that the sampling space was bimodal and only one re-
gion of it was sampled. In this case, the process should
be restarted and inferences made based on the new
state of knowledge. The induction problem does not
make science impossible; theories or alternatives can
still be evaluated based on reasonable sets of as-
sumptions.

A different matter, which places Bayesians in an un-
comfortable situation, is the impossibility of fixing these
previous beliefs in the multivariate case. Due to this
difficulty, the modern Bayesian tends to ignore prior
information, considering the prior density as a mathe-
matical artifact that allows him to make inferences
based on probabilities. In a classic Bayesian paper, Lin-
dley and Smith (1972) argued that “it is typically true
that there is available prior information about the pa-
rameters and that this may be exploited to find im-
proved, and sometimes substantially improved, esti-
mates [with respect to the least squares ones].”

Compare this with Bernardo and Smith (1994),
quoted at the end of the paragraph on prior information.
The problem in the multivariate case is that, because
even flat priors are somewhat informative, how they
affect the posterior distributions should be ascertained.
However, subjective priors cannot be prepared as in the
univariate case. One way of dealing with this difficulty
is to try several priors constructed under different
hypotheses (for example, independence of the parame-
ters, dependence described from values taken from the
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literature, flat priors) and check whether the results are
robust with respect to the change of prior information.

Bayesian Methods Applied

Until recently, the main criticism made to Bayesian
methods was their practical sterility: they did not pro-
duce results. The methodology implies the resolution
of complicated multidimensional integrals or the use of
more or less accurate approximations. The recent use
of MCMC techniques has solved most of these problems,
although it has generated new ones. Most of these new
problems are related to the convergence of these chains.
Fortunately, these new problems are easier to handle,
particularly when the distribution of the data is normal.
These MCMC techniques provide random samples of
the joint and marginal posterior distributions, and thus
the mean, standard deviation, and confidence intervals
can be directly estimated from the samples without
the need of integration. New variables such as ratios,
squares, and so on can be derived from the components
of the joint posterior distribution samples obtained, and
confidence intervals can be derived from these distribu-
tions without the need of any approximation.

There are many cases in animal breeding in which
the frequentist approach gives an accurate and rapid
answer, and Bayesian methods are not needed (for ex-
ample, the estimation of breeding values by BLUP or
indexes). The main problems of the frequentist tech-
niques when they are applied to animal breeding are
of two sorts. One type is derived from the use of large
databases, and the other one is related to the difficulties
in obtaining accurate estimates of the standard errors
in many complex situations. An example of the first type
is the difficulties with obtaining multivariate REML
estimation of the variance components when the data-
base is large (e.g., in dairy cattle). An example of the
second type is the problem of taking into account the
error of estimation of variance components in the pre-
diction of breeding values. This is a major problem when
the database is not large and references about variance
components cannot be found in the literature, as often
happens in meat quality traits or litter size components,
for example. For large databases, MCMC techniques
permit drawing posterior distributions of genetic pa-
rameters that may be easier to compute than the corres-
ponding REML solutions. The Bayesian approach also
has advantages in some complex situations.

The Bayesian way of attacking an estimation problem
is always the same: to derive the posterior distribution
of the parameters given the data. After calculating the
likelihood and determining the prior distributions,
MCMC techniques can be used to obtain samples of the
marginal posterior distributions. New problems can be
solved, in principle, just by defining them correctly.
This is in some ways similar to ML techniques. Al-
though many genetic programs have a massive amount
of data, there are still experiments in which the data-
base is limited by the cost or the available facilities.
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Even when the amount of data is substantial, it can
happen that some levels of fixed effects contain only a
small amount of information. An example of large data
sets with lack of information is the case of the heteroge-
neity of variance with respect to herds in dairy cattle.
The model may incorrectly suppose the same additive
and residual variances for all herds. However, particu-
larly when herds are managed in many different envi-
ronments, there may not be enough information to esti-
mate the genetic variance within each herd (see Gianola
et al., 1992, for a proposal of Bayesian estimation of
heterogeneous variances in dairy cattle). Maximum
likelihood methods have good frequentist properties,
but only asymptotically. When the data are scarce it is
unknown whether these good properties are conserved.
Posterior densities are more precise in these cases for
describing the state of ignorance, and by examining
different priors it is possible to determine how much
the results are affected by the lack of information. More-
over, with few data, likelihoods are rather flat, making
it difficult to find the absolute maximum, and a local
maximum may be found instead. Posterior marginal
densities take into account this imprecision and have
the advantage of being univariate functions. Samples
of these functions can be found by MCMC techniques
and their representation better illustrates the accuracy
of the estimation. Finally, when the amount of data is
small, REML estimates of dispersion parameters are
not reliable. This may be a serious problem, because
breeding values depend on them. Marginal posterior
densities weight the state of ignorance about variance
components when breeding values are estimated. If
some estimates of variance components can be found
in the literature, the frequentist way of estimating
breeding values implies the use of a single value based
on them (the average of them, for example). The Bayes-
ian way weights every possible value by its posterior
probability (e.g., see Blasco et al. [1998] for a prior
weighting of estimates of variance components based on
the literature and Piles et al. [2000b] for a comparison of
meat quality traits between a selected and a control
line).

Standard errors of the heritability, genetic correla-
tion, or other functions of the variance components are
estimated after Taylor series approximations (see, for
example, Bulmer, 1985). Using modern MCMC tech-
niques it is not necessary to use any approximation to
draw the marginal posterior distribution of a function
of the variance components or of other estimated pa-
rameters (an example is given in Appendix I). On other
occasions, for example in nonlinear problems, the sam-
pling distribution of the parameters is not known. Here
again, MCMC techniques permit drawing a marginal
posterior distribution of the parameters of interest, ex-
pressing the uncertainty about these parameters (e.g.,
see Mignon-Gastreau et al. [2000] and Piles et al.
[2000a] for examples with nonlinear growth curves).

When two lactation curves or two growth curves are
to be compared, the frequentist may use transforma-
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tions or approximations (for example, to work in loga-
rithmic scale or to approximate to linear functions by
using Taylor series). In order to apply these transforma-
tions, more hypotheses are needed; for example, if a
logarithmic scale is used, the errors are assumed multi-
plicative instead of additive. Tests of hypotheses to com-
pare curve parameters become difficult to apply and
are often based on approximated likelihoods used for
likelihood ratios. Moreover, the standard error of a pa-
rameter in the original scale cannot be properly ob-
tained from the standard error calculated in the trans-
formed scale. Bayesian solutions for these problems are
straightforward and have been developed by Varona et
al. (1997) in a general form, Varona et al. (1998) for
lactation curves, and Piles et al. (2000a,b) for growth
curves. Gianola et al. (1999) derived a general solution
for nonlinear fitting of longitudinal data when data are
selected for other traits (for example, growth curves in
populations selected for growth rate, or lactation curves
in populations selected for milk, fat, and protein). They
always consist, again, of deriving the posterior distribu-
tion of the parameters given the data and no transfor-
mations or linear approximations are then needed.

When a parameter is needed for estimating another
one, for example, when variance components are
needed to estimate breeding values, Bayesian tech-
niques allow consideration of the error of estimation
of the nested parameter (the variance, in this case).
Inferences are made on the marginal posterior distribu-
tions, after integrating out variance components (Sor-
ensen et al., 1994), that is, after having considered all
possible values of variance components, weighted by
their probability. Frequentist techniques are usually
based on tests of robustness, which are complicated to
perform in multivariate cases. There are other cases in
which we can find more levels of hierarchy. For exam-
ple, in nonlinear growth or lactation curves, the param-
eters of the curve may be affected by environmental and
genetic effects. Here there are three levels of hierarchy:
variance components are needed to estimate the effects
and the effects are needed to estimate the growth curve
parameters (see Gianola et al., 1999; Varona et al.,
1998; and Piles et al., 2000a,b).

There is a technique called data augmentation that
permits simplifying the computation for the models
used for inferences. For example, when we have cen-
sored data, it would be easier to use a complete normal
distribution rather than a truncated one. In multivari-
ate analyses with different design matrices (for exam-
ple, growth traits and reproductive traits), it would be
easier to solve a case in which all traits have the same
matrix designs. In these cases, the technique consists
of augmenting the data vector by generating data to fill
the gaps. If we call z the vector of generated data, the
inferences on the heritability (for example) are made
using MCMC techniques to draw the posterior distribu-
tion P(h?, zly), because P(h?, z|y) o« P(z, y|h?) P(h?) and
it is easier to use MCMC techniques (to derive condi-
tionals, as it is explained in Appendix I) with the com-



2042

plete set of data (z, y). After obtaining samples for
P(h?, zly), just ignore the samples generated for z and
consider only the samples for h? obtaining a draw from
the marginal posterior distribution P(h%y), as shown
in Appendix I (notice the similarity to the EM-algorithm
used for ML estimations). A detailed account of this
procedure can be found in Tanner (1995). It has been
used in a variety of problems, for example, for threshold
models (Sorensen et al., 1995), or in QTL mapping (Sa-
tagopan et al., 1996).

A common need in QTL detection is to choose between
models with no QTL, one QTL, or two or more QTL,
and so forth. All the advantages of the Bayesian ap-
proach for model choice hold here. Scheler et al. (1998)
have compared the frequentist and Bayesian ap-
proaches in closely related models and find the Bayes-
ian estimates to be more accurate. Because Bayes fac-
tors are not easy to calculate, alternative MCMC tech-
niques (such as “reversible jump”) for model choice have
been proposed. Uimari and Hoeschele (1997) compared
several approaches, and Sillanpaa and Arjas (1998,
1999) used reversible jump for mapping multiple QTL
in a model in which the number of QTL is an unobserved
random variable. New research is done in the field to
overcome the numerical difficulties. A tutorial about
reversible jump can be found in Waagepetersen and
Sorensen (2000).

Threshold traits are an example of three levels of
hierarchy, where the thresholds depend on fixed effects
and breeding values, and these effects depend on the
variance components to be estimated. The first work
done using Bayesian techniques in animal breeding was
just for threshold traits, by Gianola and Foulley (1982),
proposing to calculate the mode of a joint posterior den-
sity. Now, with MCMC techniques, marginal posterior
distributions can be drawn. Bayesian techniques also
allow the joint analysis of threshold and continuous
traits (Janss and Foulley, 1993). A detailed description
of how to arrive at the marginal posterior distributions
using MCMC techniques can be found in Sorensen et
al. (1995) and Sorensen (1999).

Survival analyses need the use of complex propor-
tional hazard models (Weibull and Cox models). These
models can be extended to include genetic effects. Mixed
survival models are called “frailty” models. There are
frequentist approaches to these models using the EM
algorithm, and also MCMC techniques have been de-
rived to estimate posterior distributions, but they are
computationally difficult. A Bayesian solution proposed
by Ducroq and Casella (1996) using an approximate
method common in Bayesian analyses (Laplacian inte-
gration) results in a more straightforward solution.

Consider one of the main problems of dairy cattle
genetic evaluation: the undeclared preferential treat-
ment. Some farmers provide more feed, for example, to
the cows obtained from good sires, but they do not de-
clare this. Because the normal distribution has thin
tails (i.e., individuals that are placed one, two, or three
standard deviations greater than the mean become
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much more rare than in the case of other distributions),
this preferential treatment can have a substantial ef-
fect on the evaluation of sires. Other distributions, such
as Student’s ¢, have thicker tails and this overvaluation
has a much smaller effect; the analysis becomes more
“robust.” The “thickness” of the tail depends on the
degrees of freedom, and it is a parameter to be esti-
mated. Bayesian techniques permit handling problems
related to robustness by using ¢-distributions (Stranden
and Gianola, 1999). The inconvenience is that multiple
t-distributions do not have the nice properties of the
multinormal world (e.g., independence when the covari-
ance is null, regression of one variable on another is no
longer linear, etc.), and analyses become more com-
plicated.

Conclusions

If the animal breeder is not interested in the philo-
sophical problems associated with induction, but in
tools to solve problems, both Bayesian and frequentist
schools of inference are well established and it is not
necessary to justify why one or the other school is pre-
ferred. Neither of them now has operational difficulties,
with the exception of some complex cases. There is soft-
ware available to analyze a large variety of problems
from both points of view. To choose one school or the
other should be related to whether there are solutions
in one school that the other does not offer, to how easily
the problems are solved, and to how comfortable the
scientist feels with the particular way of expressing
the results. Both schools present formal problems and
paradoxes, although problems and paradoxes with
methods of greater familiarity are often better toler-
ated. For example, a REML analysis with few data may
be more easily accepted than a Bayesian analysis in
which prior information affects the results. Statistical
refinements should not lead the scientist to forget the
necessity of having sufficient experimental information
to achieve an appropriate level of precision in expres-
sion of the results. The anguish of the scientist for find-
ing exact results instead of probable inferences is not
new. We can find in the Eglogae IX of Virgilius, in an
agricultural context, the exclamation “Felix qui potuit
rerum cognoscere causas”: Happy the man that can
know the causes of the things!”

Implications

If the animal breeder is not interested in the philo-
sophical problems associated with induction, but in
tools to solve problems, both Bayesian and frequentist
schools of inference are well established and it is not
necessary to justify why one or the other school is pre-
ferred. Neither of them now has operational difficulties,
with the exception of some complex cases. There is soft-
ware available to analyze a large variety of problems
from both points of view. To choose one school or the
other should be related to whether there are solutions
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in one school that the other does not offer, to how easily
the problems are solved, and to how comfortable the
scientist feels with the particular way of expressing
the results.
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Appendix I. Gibbs sampling
Consider the model [1]
y=Xb+Zu+e

The objective is to obtain random samples from the
marginal posterior distributions of all unknowns; i.e.,
from

fbyly), foaly), . . ., fuily), fualy), . . ., floaly), flotly)

and also for any combination of unknowns, for example
flod/(o% + o2)| y] = f(h?y)

These samples will be used for inferences. They can be
used for drawing histograms that will give an approxi-
mate idea about the shape of the posterior distribution,
and they can provide estimates of the mean, mode, and
median of the distribution and can also be used for
estimating confidence intervals (called “credibility in-
tervals” by Bayesians). To obtain these samples, first
obtain random samples of the complete posterior distri-
bution f(b, u, ¢, ¢Zy). This will lead to a matrix in
which each row will be one sample of each unknown,
and each column a set of random sampled points of the
marginal posterior distribution of each unknown.
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2 2
b1 bay - U11 U21 ... Oul Oel
2 2
bli bgi ... U4 Uy ... Oyi Oei

Thus, the set of values (b;y, .. ., by, . ..) is a random
sample of the posterior distribution f(b]y) and will be
used to make inferences about b;, and the same can be

2
. Ouiy + -« )
is a sample of the posterior distribution f(c2y), and so
on. To make inferences about the heritability, create a

said about the other columns, the set (o2, . .

new column using o2 and o2 of each row. Then the set
[021/(c21+04), . . ., 0%/(c% +0%),. . ]is arandom sample
of the posterior distribution f(h2y).

It is not possible to directly obtain a random sample
of the complete posterior distribution f(b, u, o2, o2y),
because this is a high-dimensional function, the product
of several multidimensional functions; for example, if
we take normal priors for b and u, and inverted chi-
square priors for the variance components, the posterior
distribution is a multidimensional function, a product
of normal and inverted chi-square distributions, and it
is divided by a constant f(y) that is virtually impossible
to calculate. To reduce the dimensionality of the prob-
lem and make it possible to obtain random samples of
the complete posterior distribution, Monte-Carlo Mar-
kov Chain (MCMC) techniques are used. The most used
among them is called “Gibbs sampling” because origi-
nally it was used to sample the type of distributions
called “Gibbs distributions.” The procedure consists of
sampling from conditional distributions in an iterative
way, as follows. Write the conditional function

2 2
f(blley b35 LIRIES bi; <. U, Ug, Uz, ..., Wi, . . .y Oy, O, y)’

then give arbitrary values to by, bs, . . ., by, . . ., ug, uy,
us, ..., U, ... 02, 02, and sample a random value for
b; from this conditional distribution. To do this, the
conditional distribution should be of a type for which
sampling algorithms are available, otherwise other
MCMC techniques (for example, Metropolis-Hastings)
should be used to sample a random number from this
conditional distribution. With the randomly sampled
value for by, and the other former arbitrary values, take
arandom sample of by from the conditional distribution

f(bzlbl, b3, ey bi; ..., U, U, Usg, ... U ..., 0'121, Ug, y)

With the sampled values for b; and by, and the other
former values, take a random sample from the condi-
tional distribution of bz, and proceed this way until a
sample of each conditional distribution of each un-
known has been taken. After this, begin again and re-
peat the cycle. After some cycles of iteration, the ran-
dom sample numbers extracted from the conditionals

are also random samples from the posterior distribu-
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tion. These first iterations (the “burn in”) are disre-
garded.

Consider a simple example in order to understand
this intuitively: to obtain a posterior distribution of f(x,
y) sampling from the conditionals f(x|y) and f(y[x). Take
an arbitrary value for x, say x = 0. Figure 4 shows f(x,y)
represented as lines of equal probability (as level curves
in a map). Our arbitrary value x = 0 permits sampling
a random number from f(y|x = 0), which is the y-axis.
Because the probability between a and b is higher than
in other parts of f(y|x = 0), the number sampled will be
found between a and b more probably than in other
parts of the conditional function. Suppose y = 2: sample
on f(x|y = 2). The line y = 2 cuts f(x,y) and gives as an
interval (c,d) in which we will find the next sampled
extraction with more probability, thus x will probably
be found between ¢ and d: say, x = 4. Sample any form
flylx = 4). This number will probably be between the
interval (e,f). Observe, the tendency to sample from the
highest areas of probability more often than from the
lowest areas. At the beginning, x = 0 and y = 2 were
points of the posterior distribution, but they were not
random extractions, and thus we were not interested
in them. However, after many iterations, we will find
more samples in the highest areas of probability than
in the lowest areas, and thus we find random samples
from the posterior distribution. This explains why the
first points sampled should be discarded, and only after
some cycles of iteration are samples taken at random.

The main problems associated to this procedure are
the following.

First, strictly speaking, it cannot be demonstrated
that we are finally sampling from a posterior distribu-
tion. A Markov chain must be irreducible to converge
to a posterior distribution. Although it can be demon-
strated that some chains are not irreducible, there is
no general procedure to ensure irreducibility.

Second, even in the case in which the chain is irreduc-
ible, it is not known when sampling from the posterior
distribution begins. By using several chains a point is
arrived at where the variability among chains may be
attributed to Monte-Carlo sampling error, and thus
support the belief that samples are being drawn from
the posterior distribution. There are some tests to check
whether this is the situation. Good practical textbooks
are Gelman et al. (1995), Gilks et al. (1996), and Robert
and Casella (1999).

Third, even having a irreducible chain and when the
tests ensure convergence, the converged distribution
may not be stationary. Sometimes there are large se-
quences of sampling that give the impression of stabil-
ity, and after many iterations the chains move to an-
other area of stability.

The above problems are not trivial, and they occupy
a part of the research in MCMC methods. Practically
speaking, what people do is to launch several chains
with different starting values and to observe their be-
havior. No pathologies are expected for a large set of
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Figure 4. Posterior distribution and conditionals.

problems (for example, when using multivariate distri-
butions), but some more complicated models (for exam-
ple, threshold models with environmental effects in
which no positives are observed in some level of one of
the effects) should be examined with care.

It should be noted that these difficulties are similar
to finding a global maximum in multivariate likelihood
with several fixed and random effects. With a large
database, second derivative algorithms cannot be used,
and thus there is a formal incertitude about whether

the maximum found is global or local. Here again, peo-
ple use several starting values and examine the behav-
ior of their results. Maximum likelihood methods pres-
ent additional problems in estimation when the model
becomes more complex. Thus, the difficulties of MCMC
methods should not be considered a major problem in
using Bayesian techniques, at least not any more diffi-
cult than the ones found when using advanced fre-
quentist techniques, for which MCMC methods are
sometimes also used.



